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The scaling of the reconnection rate with external parameters is reconsidered for antiparallel
reconnection in a single-fluid magnetohydrodynamic �MHD� model, allowing for compressibility as
well as asymmetry between the plasmas and magnetic fields in the two inflow regions. The results
show a modest dependence of the reconnection rate on the plasma beta �ratio of plasma to magnetic
pressure� in the inflow regions and demonstrate the importance of the conversion of magnetic
energy to enthalpy flux �that is, convected thermal energy� in the outflow regions. The conversion
of incoming magnetic to outgoing thermal energy flux remains finite even in the limit of
incompressibility, while the scaling of the reconnection rate obtained earlier �P. A. Cassak and M.
A. Shay, Phys. Plasmas 14, 102114 �2007�� is recovered. The assumptions entering the scaling
estimates are critically investigated on the basis of two-dimensional resistive MHD simulations,
confirming and even strengthening the importance of the enthalpy flux in the outflow from the
reconnection site. © 2010 American Institute of Physics. �doi:10.1063/1.3429676�

I. INTRODUCTION

Magnetic reconnection is generally considered to be the
key process in the release of magnetic energy and its conver-
sion to particle kinetic energy in explosive phenomena such
as solar flares and magnetospheric substorms. It is also the
main mechanism for the transport of magnetic flux, energy,
and particles across magnetic boundaries, such as the Earth’s
magnetopause. Traditional approaches have almost exclu-
sively investigated symmetric reconnection, in which the two
plasmas in the inflow regions are identical and differ only by
the direction of the reconnecting magnetic field component.
However, the more generic case is one in which densities,
temperatures, and magnetic field strengths in the two inflow
regions are different. This asymmetric reconnection is gener-
ally realized at the magnetopause. Asymmetries may also
occur in the magnetotail when the two lobes get loaded
unevenly,1 which happens particularly in the presence of a
strong east-west magnetic field component,2 or on the Sun,
for instance, when newly emerging magnetic flux interacts
with preexisting magnetic loops �e.g., Refs. 3–5�.

An important, nontrivial question is how the reconnec-
tion rate, measured by the electric field Er at the reconnec-
tion site, scales with the external inflow parameters when
they are not identical on the two inflow sides. Reconnection
rates in asymmetric configurations have been investigated
recently by Cassak and Shay,6 Borovsky and Hesse,7

Borovsky et al.,8 and Birn et al.,9 all using resistive MHD.
Cassak and Shay6 used a Sweet–Parker type analysis to de-
rive scaling laws for the reconnection rate �and other param-
eters� in the incompressible regime for antiparallel reconnec-
tion between plasmas of different magnetic field strengths
and densities. Their result �converted to MKS units� can be
written as

Er = fvAB̄ , �1�

where f is a dimensionless factor, typically much smaller

than unity, and vA and B̄ represent a hybrid Alfvén speed and
a hybrid magnetic field strength, respectively, defined by

vA =�B1B2

�0�̄
, �2�

B̄ =
2B1B2

B1 + B2
, �3�

where

�̄ =
B1�2 + B2�1

B1 + B2
, �4�

represents an average density, resulting from the simple mix-
ing of the inflowing plasmas without compression. Sub-
scripts 1 and 2 denote the quantities in the two inflow re-
gions. In the incompressible model of Ref. 6, �̄ also
represents an estimate for the density in the outflow region.

In symmetric configurations, B̄ is the magnetic field
strength and vA the Alfvén speed in either inflow region. In
such scenarios frequently the dimensionless factor f , equiva-
lent to the Alfvén Mach number in the inflow region, is de-
noted the reconnection rate. In classical resistive magnetohy-
drodynamic �MHD� models of reconnection the magnitude
of f is controlled by the magnitude of the resistivity �. For
instance, in the steady-state Sweet–Parker model10,11 f is pro-
portional to �1/2, whereas Petschek’s model of fast
reconnection12,13 permits a much higher reconnection rate,
which depends only weakly �logarithmically� on the resistiv-
ity and may reach f �0.1. Similar rates are also found in
simulations of collisionless reconnection, in which Hall
effects and ion particle dynamics become important �e.g.,
Refs. 14 and 15�.a�Electronic mail: jbirn@lanl.gov.
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The Cassak–Shay scaling �1� was tested and approxi-
mately verified in various resistive MHD simulations of re-
connection: for the special case of initially uniform density,6

for cases with identical magnetic field strengths but different
densities,7 in driven and nondriven scenarios in which both B
and � differed in the two inflow regions,9 as well as in Hall-
MHD simulations,16 all based on initially one-dimensional
plane current sheets without guide field �the magnetic field
component in the current direction�, and in global magneto-
spheric MHD simulations.8 Despite the fact that these simu-
lations included compressibility, reasonable agreement with
the Cassak–Shay formula �1� was found, which is based on
incompressibility and does not include a dependence on the
plasma beta �ratio of plasma over magnetic pressure�.

The influence of the plasma beta was investigated in
observations by Paschmann et al.,17 which indicated that the
occurrence rate of fast flows at the magnetopause was re-
duced for increasing beta, presumably reflecting lower effec-
tiveness of collisionless reconnection or tearing instability. In
contrast, a study by Gosling et al.2 did not show a significant
influence of beta. A possible reason is that this study in-
cluded much stronger guide fields, which are expected to
lower compressibility. A theoretical study of collisionless
tearing instability by Ding et al.18 confirmed a strong stabi-
lization with increasing beta for the symmetric case but
showed only little effect of the magnetosheath beta in an
asymmetric case without guide field. Using particle-in-cell
�PIC� simulations, Pritchett19 found a reduction of the recon-
nection rate for asymmetric cases by factors of 2–3 com-
pared to similar symmetric case but did not investigate the
role of beta.

We will again address the reconnection problem from
the one-fluid MHD approach, allowing for compressibility in
addition to asymmetry. Although for many space scenarios a
kinetic approach seems more appropriate, the fluid limit
seems sufficient to explore the dependence of the reconnec-
tion rate on the external parameters. In Sec. II, we reconsider
the scaling of the reconnection rate and the energy conver-
sion based on an integral approach similar to that outlined by
Priest and Forbes20 for the symmetric case and by Cassak
and Shay6 for the asymmetric incompressible case. In Secs.
III and IV, we will then check the scaling and the energy
conversion estimates, respectively, on the basis of resistive
MHD simulations in different asymmetric configurations.
This is followed by a summary and discussion in Sec. V.

II. SCALING

A. General asymmetric case

The basic scenario is illustrated in Fig. 1, using notations
consistent with Refs. 12 and 6. Inflow parameters are de-
noted with subscripts 1 and 2, respectively, and outflow pa-
rameters with the subscript “o.” Consistent with previous
approaches we consider a steady state, i.e., � /�t�0. The
conservation of inflow and outflow quantities are obtained
from integrating over the surface of a box with a width of 2�
and a length of 2L �dashed rectangle�, assuming � /L=��1.
Here, we are not concerned with a full solution inside and/or
outside the box but rather with the scaling obtained from

simple balance arguments, analogous to the approach by Ref.
6. In this approach variations of the inflow parameters over
the length of the box are neglected. We identify B1 and B2 as
the absolute values of the x components and consider the Bz

components in the inflow regions as small of order �. Simi-
larly, v1 and v2 are the absolute values of the z components
of the inflow velocity and the vx components are considered
small of order �. In the present paper we also neglect the
magnetic field component By, often denoted as “guide field.”
This component will be included in a follow-up paper.

Mass conservation in the box of Fig. 1 gives

L��1v1 + �2v2� = 2��ovo. �5�

The assumption of steady state with Faraday’s law implies
that the electric field in the y direction, out of the plane of
Fig. 1, is uniform, defining the reconnection rate

Er = v1B1 = v2B2 = voBo. �6�

Equations �5� and �6� are consistent with the approaches by
Cassak and Shay6 and Swisdak and Drake.21 We note that
vo�vox and Bo�Boz if the outflow is primarily in the x
direction.

Next we consider force balance, starting with the z di-
rection. It is easy to see that the inertia terms in the inflow
regions are of order �2 and thus negligible. This leads to the
pressure balance

p1 +
B1

2

2�0
= p2 +

B2
2

2�0
= ptot. �7�

Furthermore, this pressure balance must also hold approxi-
mately at the outflow locations x= �L, because the inflow
parameters, including ptot, are assumed to be approximately
constant over the scale length L, that is

po +
Box

2 + Boz
2

2�0
� ptot. �8�

Considering our scaling �=� /L�1, we find that v1 and v2,
and consequently Bo should be of order �. It seems therefore
justified in lowest order to neglect the magnetic pressure as
being of order �2 in the outflow region, such that

po � ptot, �9�

which is also the pressure at the x-point.
Now we consider force balance in x

ρ , B , p , vo o oo2δ

2L

ρ , B , p , vo o oo

x

z

ρ , B , p , v1 1 11

ρ , B , p , v2 2 22

FIG. 1. Schematic of the reconnection site for asymmetric reconnection.
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�v · �vx = − �p/�x + jyBz. �10�

In the classical approaches of Sweet10 and Parker11 for sym-
metric reconnection the outflow pressure po is equated to the
inflow pressure pi= p1= p2 and the acceleration is assumed to
result from the pressure difference between the x-point and
the outflow region. This is equivalent to neglecting the
Lorentz force term in Eq. �10�. If �v ·�vx is approximated by
�vx�vx /�x= �� /2��vx

2 /�x and � is assumed constant, Eq.
�10� then yields

p + �vx
2/2 = const. �11�

Using the pressure balance �7� at the location of the x-point
then leads to

vo = vA = Bi/��0�i. �12�

However, our pressure balance arguments above show
that the assumption po� pi is not consistent with pressure
balance in z and that it is more appropriate in the stretched
geometry of Fig. 1 to neglect the pressure gradient in Eq.
�10�. This is consistent with the approaches taken by
Petschek,12 Soward and Priest,22 Priest and Forbes20 �recon-
sidering the Sweet–Parker model� for symmetric configura-
tions, and by Swisdak and Drake21 for asymmetric configu-
rations. Consistent with the latter, we approximate

�v · �vx � �ovo
2/L , �13�

and

�jyBz� �
B1 + B2

2�0�
Bo. �14�

Equating Eqs. �13� and �14� and using Eqs. �5� and �6� lead
to

vo
2 =

B1B2

�0�̄
, �15�

where �̄ is defined by Eq. �4�. �A different form of deriva-
tion, based on integral momentum conservation, is consid-
ered in the Appendix.� This is identical to the results of
Swisdak and Drake21 and Cassak and Shay;6 however, in the
latter, vo was obtained from energy balance arguments rather
than force balance. The result �15�, when specified for the
symmetric compressible case, is identical to the outflow
speed obtained for the incompressible case and with Eq.
�2.16� of Soward and Priest22 for compressible cases.
However, it differs from Eq. �4.47� of Priest and Forbes,20

in which the inflow density is replaced by the outflow den-
sity. This difference may have resulted from estimating
Bo /��Bi /L on the basis of � ·B=0, rather than the combi-
nation of Eqs. �5� and �6�, which yields Bo / ��o���Bi / ��iL�.
We note here again that, to the lowest order in � /L, Bi is
assumed to be constant over the scale length L, such that L
and � are not necessarily the scales defined by � ·B=0.

Using Eq. �15� together with Eqs. �5� and �6�, we now
obtain the reconnection rate

Er =
�

L
voB̄

�o

�̄
, �16�

where vo is given by Eq. �15� and B̄ is defined by Eq. �3�.
Equation �16� is identical to the Cassak–Shay result, except
for the compression factor r��o / �̄.

To estimate the compression factor r, we now use the
energy flux balance, including three forms of energy flux

S = E � B/�0 �Poynting flux� , �17�

H = �u + p�v =
	

	 − 1
pv �enthalpy flux� , �18�

K = ��v2/2�v �bulk kinetic energy flux� . �19�

Here u= p / �	−1� is thermal energy density; for 	=5 /3 and
p=nkT, u=3nkT /2. We note that the Poynting vector �17�
does not simply represent convected magnetic energy but
includes in addition the energy flux resulting from the work
done by the �magnetic part of� Maxwell’s stress tensor. This
is analogous to the enthalpy flux �18�, which also, in addition
to convected thermal energy �uv�, includes the work done by
the plasma pressure �pv, or more generally, P� ·v�.

Consistent with previous approximations we neglect
bulk kinetic energy in the inflow region and Poynting flux in
the outflow region and obtain

	
B1
2

�0
+

	

	 − 1
p1�v1 + 
B2

2

�0
+

	

	 − 1
p2�v2�L

= 
 	

	 − 1
po +

1

2
�ovo

2�2�vo. �20�

Equation �20� differs from the result of Cassak and Shay6 in
that enthalpy flux H is included in both inflow and outflow
and that the magnetic energy flux in the inflow regions is
given by �B2 /�0�v. After some algebra and using Eqs.
�5�–�7�, �9�, and �15�, one finds

r �
�o

�̄
=


�B1 + B2�
�1B2 + �2B1

, �21�

where


 = 	/�	 − 1� , �22�

�i = �1 + 
�i�/�1 + �i�, i = 1,2, �23�

�i = 2�0pi/Bi
2, i = 1,2. �24�

After insertion of expressions �3�, �4�, �15�, and �28� into Eq.
�16�, the reconnection rate is given by

Er =
2�

L

B1
3/2B2

3/2

��0��2B1 + �1B2��B1 + B2�

�B1 + B2�

�1B2 + �2B1
. �25�

Expression �25� includes the effects of compressibility and
enthalpy flux.

The incompressible limit of the reconnection rate �25�
can be obtained either for 	→ �corresponding to 
→1 and
�i→1� or for �i→ �corresponding to �i→
�. In either
case, �o→ �̄ and we recapture the Cassak–Shay result for the
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reconnection rate. Note, in contrast, that the energy fluxes
also include finite enthalpy flux, which reduces to pv in the
incompressible limit 	→.

The expression for r can be further simplified if we nor-
malize the magnetic fields to B2, assumed to be the larger
one, defining

b = B1/B2. �26�

The pressure balance �7� relates �1 and �2 with b via

b2�1 + �1� = 1 + �2. �27�

This yields

r =

�1 + �2�


�1 + �2� − �
 − 1�b
. �28�

The compression factor r=�o / �̄ is shown in Fig. 2 as func-
tion of the plasma beta in the high-field inflow region, �2, for
	=5 /3 and various magnetic field ratios b=B1 /B2. When the
ratio between B2 and B1 is large �b→0� we find r=1, that is,
the incompressible limit. This results from the fact that for
small b the plasma beta must be large on the low-field side to
ensure pressure balance.

B. Energy conversion and transfer

We can now also compare the different in- and outgoing
energy fluxes �17�–�19�, integrated over the lengths 2L or 2�,
respectively. The result becomes particularly simple, if the
fluxes are normalized by the total incoming Poynting flux,
which is given by SinL= �S1+S2�L for a half box. We find

S̃1 =
b

1 + b
, �29�

S̃2 =
1

1 + b
, �30�

H̃1 =

b�1

2�1 + b�
, �31�

H̃2 =

�2

2�1 + b�
, �32�

H̃o =
1

2
+ 


b�1 + �2

2�1 + b�
, �33�

K̃o =
1

2
, �34�

where the symbol  denotes the integrated normalized quan-
tities. This shows that 1/2 of the incoming Poynting flux gets
converted to bulk kinetic energy flux, as found earlier for the
symmetric Sweet–Parker model �e.g., Ref. 20�. Subtracting
Eqs. �31� and �32� from Eq. �33� shows that the remaining
half is converted to enthalpy flux. This result is found inde-
pendent of the values of 	, �, densities, and the magnetic
field ratio b. It will be evaluated critically in Sec. IV on the
basis of numerical simulations.

C. Symmetric case

For the symmetric case we obtain

r =

�1 + �i�
1 + 
�i

. �35�

We may now interpret the subscript i as representing “in-
flow.” This result is consistent with Eq. �2.18� obtained by
Soward and Priest.22 It is equal to the compression factor
obtained for switch-off shocks in the limit of small Bn and
vn, where the subscript n denotes the components normal to
the shock. We note, however, that our derivation does not
require the presence of shocks. The factor r varies between 

�=2.5 for 	=5 /3� for �i→0 and 1 for large �, as shown in
Fig. 2 �dashed line�.

The energy fluxes in the outflow region are given by

Ho = 
povo = 

Bi

2

2�0
�1 + �i�vo, �36�

and

Ko =
1

2
�ovo

2vo = r
Bi

2

2�0
vo. �37�

Because of r�
, the bulk kinetic energy flux is generally
smaller than the total enthalpy flux, which includes a trans-
mitted portion in addition to the converted part; the two
fluxes become equal for �i→0.

r

β2

b = 1
b = 2/3
b = 1/9

0.0
0.5

0.5

1.0

1.0 1.5

1.5

2.0

2.0

2.5

FIG. 2. �Color online� Compression factor r=�o / �̄ of the reconnection rate
as function of the plasma beta in the high-field inflow region, �2, for
	=5 /3 and various magnetic field ratios b=B1 /B2.
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D. Fast reconnection and Sweet–Parker regime

Our formulas for the reconnection rate �16� or Eq. �25�
still contain the undetermined factor � /L. The magnitude of
this factor depends on the physics of the dissipation region
and its surroundings including the boundary conditions. Here
we will consider only two limits. Simulations of fast colli-
sionless reconnection �e.g., Ref. 14�, as well as resistive
MHD simulations in the regime of large but localized resis-
tivity �e.g., Refs. 8, 16, 23, and 24; see also Sec. III�, indicate
that there is a rough maximum value of the order of 0.1,
which depends only weakly, if at all, on the dissipation
mechanism. Sometimes this regime of fast reconnection is
denoted Petschek reconnection. We note, however, that the
magnetic structure in this regime does not necessarily in-
clude slow shocks �particularly in collisionless reconnec-
tion�, which are a characteristic of the Petschek model, and
that the distinction between “fast” Petschek and “slow”
Sweet–Parker reconnection in resistive MHD is not mean-
ingful for large resistivity when the Lundquist number �fre-
quently called magnetic Reynolds number�

Rm = �0LVA/� , �38�

approaches unity.
For small resistivity �large Lundquist number�, the

Sweet–Parker limit can be derived when the current layer
thickness 2� is identified with the width of the diffusion
region.6 The scaling follows from equating the reconnection
electric field with the ohmic dissipation term at the x-line

Er = voBo = �J � �
B1 + B2

2�0�
. �39�

Using Eqs. �5� and �6�, one then obtains

f =
�

L
r �r

�

�0Lvo

B1 + B2

B̄
, �40�

and

Er �r
�vo

�0L
B1B2. �41�

The expression for Er is identical to Eq. �34� of Ref. 6, ex-

cept for the factor �r �and the use of the MKS system�.

III. MHD SIMULATION RESULTS: SCALING
OF THE RECONNECTION RATE

In the following we will use resistive MHD simulations
as described in Ref. 9 to check the reconnection rates for the
modified scaling in the context of temporally and spatially
varying fields. In Sec. IV, we then investigate the energy
conversion and the validity of the simplified scaling assump-
tions. The initial configurations consist of one-dimensional
plane current sheets with shifted Harris-type magnetic field
profiles given by

Bx = �tanh�z − a� + a�/�1 + a� . �42�

The initial normalization is such that �1=1 and B2=1 far
away from the current sheet. Reconnection is initiated by
imposing spatially localized resistivity given by

� = �1/cosh2 s s2 = x2/dx
2 + �z − z0�2/dz

2. �43�

The resistivity is centered at the �varying� location of the
magnetic null �x-point� z0, where Bx=0 and Bz=0. The nor-
malized maximum resistivity �1 corresponds to the inverse
of the Lundquist number �38�, based on the half-width of the
unperturbed current sheet as characteristic length.

Two scenarios are considered, distinguished as “driven”
and “nondriven.” The driven scenario is based on the
“Newton challenge” problem,15 which consists of magnetic
reconnection forced by compression through temporally and
spatially localized inflow into the exterior regions of a rela-
tively small box with half-lengths Lx=8 and Lz=4 For the
nondriven problem, without inflow, a much larger box size
is chosen to reduce the effects of boundary stabilization,
Lx=100 and Lz=40.

The reconnection rate in the resistive regime depends not
only on the external parameters in the inflow regions but also
on the magnitude of resistivity. Therefore, as in Ref. 9, we
consider the scaling together with the resistivity dependence,

0.01

0.10

0.01 0.1 1 10

βi = 0.1
βi = 1

Er/EN0

η1/VA

EN0= VA Bi

0.01

0.10

0.001 0.01 0.1 1 10

βi = 0.1
βi = 1

Er/EN

η1/(rVA)

EN = r VA Bi

(a) (b)

FIG. 3. �Color online� Maximum reconnection rates as function of resistivity for symmetric reconnection with two values of � in the inflow region. �a�
Normalized based on the Cassak–Shay formula for the incompressible limit and �b� scaled by including the compression factor r given by Eq. �28�.
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trying to match curves rather than single points. Figure 3
shows the maximum reconnection rates as function of resis-
tivity for two values of � in the inflow region in symmetric
nondriven cases. The scale size for the resistivity was chosen
as dx=dz=0.5. The results in Fig. 3�a� are scaled based on the
Cassak–Shay formula for the incompressible limit while the
reconnection rates in Fig. 3�b� are scaled by including the
compression factor r given by Eq. �28�. The normalized re-
sistivity on the abscissa corresponds to the inverse of the
Lundquist number Rm defined by Eq. �38�, using the half-
thickness Lz=1 of the unperturbed current sheet as a charac-
teristic scale length. As discussed in Sec. II D, the resistivity
dependence of the scaling factor f at low resistivity also
includes a dependence on the compression ratio r, as given in
Eq. �40�. This dependence is therefore included in the ab-
scissa values of Fig. 3�b�. However, it is not clear, whether
this scaling is also appropriate at larger resistivities, when the
Lundquist number �38� becomes comparable to, or even
smaller than unity. Inclusion of the compression factor im-

proves the matching considerably. Figure 3 also demon-
strates the transition from the slow Sweet–Parker regime at
small � �with Er approximately proportional to �1/2� to a fast
�“Petschek”� regime at large �, where the reconnection rate
approaches a maximum of 0.1 �in normalized units� and
the dependence on � weakens.

Next we reconsider the scaling of four cases with vari-
ous density and magnetic field ratios discussed by Birn et al.9

defined in Table I. Figure 4 shows the maximum reconnec-
tion rates as function of resistivity for �left� driven and �right�
nondriven cases. The scaling in the top panels is based on the
Cassak–Shay formula for the incompressible limit, while the
reconnection rates in the bottom panels are rescaled by in-
cluding the compression factor r given by Eq. �28�. Inclusion
of the compressibility improves the matching particularly for
the nondriven cases �right panels�. To obtain a quantitative
measure of the improvement we fitted the logarithmic values
of Fig. 4 to single second-order polynomials and calculated
the average deviations of the reconnection rates from these
curves. We found that including the compression factor re-
duced the average deviation from 8.2% to 7.0% in the driven
cases and from 10.1% to 6.5% in the nondriven cases. The
lack of a significant improvement in the driven cases is re-
lated to the fact that the compression factor r given by Eq.
�28� does not include a density dependence. Therefore the
relative differences between cases A and B and between
cases C and D, respectively, which each belong to the same

TABLE I. Initial parameters for four asymmetric cases.

Case B1 /B2 �2 /�1 vA1 vA2 �1 �2

A 1/9 0.4 0.111 1.581 96 0.2

B 1/9 10 0.111 0.316 96 0.2

C 2/3 0.4 0.667 1.581 1.68 0.2

D 2/3 10 0.667 0.316 1.68 0.2
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Er /ECS

η1/VA

ECS=VA B
B=2B1B2/(B1+B2)
VA =(B1B2/ρ)1/2

ρ=(B2ρ1+B1ρ2)/(B1+B2)
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D
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FIG. 4. �Color online� Maximum reconnection rates as function of resistivity for �left� driven and �right� nondriven cases defined in Table I. Different
normalizations are indicated in the figure: the top panels ��a� and �b�� are based on the Cassak–Shay formula for the incompressible limit, while the
reconnection rates in the bottom panels ��c� and �d�� are scaled by including the compression factor r given by Eq. �28�.

052108-6 Birn et al. Phys. Plasmas 17, 052108 �2010�

Downloaded 08 Mar 2011 to 128.183.169.235. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



magnetic fields and plasma beta but different density ratios,
cannot be reduced by inclusion of the factor r.

As in Fig. 3�b�, the normalization of the abscissa in Figs.
4�c� and 4�d� is based on the scaling for the Sweet–Parker
regime of small resistivity given by Eq. �41� but the proper
scaling at larger values of � is not a priori clear. We have
tried to use abscissa values � /vA instead of � / �rvA�. How-
ever this tended to shift the locations of the maxima in Er

between the pairs A and B versus C and D away from each
other. Thus keeping the same scaling as in the Sweet–Parker
regime gave a better overall agreement.

IV. MHD SIMULATIONS: ENERGY TRANSFER
AND CONVERSION

In this section, we investigate the energy conversion on
the basis of the resistive MHD simulations, focusing on the
nondriven cases. Figure 5 shows the differences between
outgoing and incoming energy fluxes as function of time for
two nondriven symmetric cases with �1=1 and dx=dz=0.5,
�a� for �=0.1, and �b� for �=1 in the inflow region. The
fluxes are integrated over the boundaries of a �half�box
0�x�10, −3�z�3. Solid lines correspond to the differ-
ence in enthalpy flux, �H, dashed lines to bulk kinetic en-
ergy, �K, and dash-dotted lines to the difference in Poynting
flux, �S. Both cases show an initial burst of net enthalpy
flux, which is not entirely balanced by incoming magnetic
energy �Poynting� flux, as indicated by the dotted lines,
which represent the total energy flux out of the box. At later
times a more steady behavior is assumed with a balance of
incoming and outgoing energy fluxes. For small � �Fig. 5�a��
the conversion to enthalpy and bulk kinetic energy flux is
close to the predicted 1:1 ratio, while at larger � �Fig. 5�b��
the conversion to enthalpy flux dominates. The gradual de-
crease of the fluxes after the initial impulsive release stems
from the fact that the magnetic field and the density in the
inflow regions decrease slowly as reconnection proceeds.
The normalization is based on the initial values of B2 and �1.

Figure 6 shows the evolution of the energy conversion
for the four cases of asymmetric reconnection defined in

Table I, using �1=0.1 and dx=5, dz=1. �H �solid lines�, �K
�dashed lines�, �S �dash-dotted lines�, and �F �dotted lines�
again represent the differences between outgoing and incom-
ing enthalpy flux, bulk kinetic energy flux, Poynting flux,
and total energy flux, respectively, integrated over the bound-
aries of a box �z��3 and 0�x�12 in cases A and B, 0�x
�20 in cases C and D. �The more elongated box size in
cases C and D was chosen because of the somewhat slower
evolution and the correspondingly lower aspect ratio of out-
flow to inflow width.� The fluxes are evaluated by accounting
for the motion of the x-line. As in the symmetric cases �Fig.
5�, all asymmetric simulations show an initial dominance of
conversion to enthalpy flux, which is not completely bal-
anced by the incoming Poynting flux, as evidenced by the net
fluxes �F. Later the four cases exhibit quite different behav-
ior in the energy conversion. Case C �lower left� with the
weakest asymmetries �B1 /B2=2 /3, �2 /�1=0.4� shows a be-
havior close to that of the symmetric case �Fig. 5�. The in-
coming Poynting flux is fairly equally divided into enthalpy
flux and bulk kinetic energy flux as predicted by our simple
scaling estimates �Sec. II�. Case D �lower right� with modest
magnetic field asymmetry �B1 /B2=2 /3� but strong density
ratio ��2 /�1=10� behaves similarly, although more energy is
converted into enthalpy flux.

Particularly cases A and B show sporadic strong varia-
tions in the transfer rates. These wiggles have been identified
as fast mode waves launched by the initial burst of reconnec-
tion, propagating upstream and being reflected at the bound-
ary. Apparently the subsequent reflection of the returning
wave packets at the strong magnetic field and pressure gra-
dients between the two inflow regions in cases A and B plays
a role in their repeated occurrence. Their main effect appears
to be the occasional modulation of the inflow speed, leading
to the sporadic variation of the converted energy but they do
not seem to have a significant effect on the overall reconnec-
tion rate and the energy budget.

The two cases with strong magnetic field asymmetry
show initially low conversion to bulk kinetic energy but the

(a)
t t

ΔF

(b)

ΔF

H
K
S
F

H
K
S
F

FIG. 5. �Color online� Energy transfer as function of time for nondriven symmetric cases with �1=1 and dx=dz=0.5: �a� for �=0.1 and �b� for �=1. �H �solid
lines�, �K �dashed lines�, and �S �dash-dotted lines� represent the differences between outgoing and incoming enthalpy flux, bulk kinetic energy flux, and
Poynting flux, respectively, integrated over the boundaries of a box 0�x�10 and z�3. The dotted lines represent the net energy flux �F into or out of the
box.
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rate increases in time, while the conversion to enthalpy flux
decreases, so that at later times, the conversion to kinetic
energy may dominate. We note, however, that the cases with
strong magnetic field asymmetry are characterized by large
plasma pressure on the low field side and hence large thermal
energy inflow from this side, so that the total thermal energy
outflow by far dominates also on the outflow side. The con-
verted enthalpy flux thus is only a very small fraction of the
total enthalpy flux through the system.

The pressure asymmetry plays a significant role also in
the acceleration process. This is illustrated by Fig. 7 which
shows the velocity components vx, normalized by the pre-
dicted outflow speed vo, Eq. �15�, and the pressure p for
cases A and C �Table I� at t=200 and t=100, respectively,
together with magnetic field lines �black contours�. The
white rectangles indicate the box used for integration of the
fluxes shown in Fig. 6. The heavy lines represent paths of
fluid elements that end at x=20 in the region of fast
outflow.

At first sight the outflows in the two cases appear simi-
lar. However, closer inspection shows that in case A �two top
panels� the fast outflow is very strongly field-aligned and
exceeds the predicted outflow speed vo, whereas in case C
�two bottom panels� there is a significant portion of the out-
flow perpendicular to the magnetic field and the outflow
speed is very close to its predicted value. Also the pressure
variation along the paths is different. Although the pressure
distributions represent snapshots corresponding to the end
points of the paths at x=20, whereas the paths represent a
time sequence, they nevertheless illustrate that in case A the
pressure decreases toward the end of the paths whereas in

case C p increases during the early evolution but remains
relatively unchanged during the acceleration stage.

The different effect of pressure gradients is demonstrated
more quantitatively by Fig. 8, which shows the forces in the
x direction as function of x for the two paths of cases A and
C whose starting points are indicated by white dots in Fig. 7.
Solid lines show the Lorentz force and dashed lines the pres-
sure gradient force. In case C �bottom panel� the Lorentz
force clearly dominates, as postulated in Sec. II, whereas in
case A �top panel� both forces are relevant and the pressure
force even dominates. This is despite the fact that the pres-
sure distribution shown in Fig. 7 �second panel� appears to
be nearly one-dimensional with ��p /�x�� ��p /�z�. The im-
portant role of the pressure gradient force in case A �and
similarly in case B, not shown here� is related to the strong
magnetic field asymmetry, which causes an offset between
field and flow patterns6,9 such that the fast outflow is pre-
dominantly on the high-field side and becomes very strongly
field-aligned. In this case only pressure gradients may pro-
vide acceleration. The fact that in case A the final speed
exceeds the predicted outflow speed by a factor of up to
1.4 is consistent with conclusions of Ref. 20 of the effect
of pressure gradients.

The excess conversion to enthalpy flux seen in Fig. 6�d�
is due to an opposite effect of the pressure gradient force,
which may balance, in part, the Lorentz force in the outflow
region. �This is seen to a minor extent also in case C of Fig.
8 for x�10, however, this deceleration is compensated in
that case by an acceleration from �p /�x for x�10.� The
deceleration leads to compressional heating and thereby a
conversion from bulk kinetic to thermal energy flux.

ΔF

ΔF

ρ /ρ = 102 1

Β /Β = 1/91 2

Β /Β = 2/31 2

(a) (b)

(c) (d)

t t

ρ /ρ = 0.42 1

H
K
S
F

H
K
S
F

FIG. 6. �Color online� Energy transfer as function of time for four nondriven asymmetric cases A–D defined in Table I �corresponding to panels �a�–�d�� with
�1=1 and dx=dz=0.5. �H �solid lines�, �K �dashed lines�, and �S �dash-dotted lines� represent the differences between outgoing and incoming enthalpy flux,
bulk kinetic energy flux, and Poynting flux, respectively, integrated over the boundaries of a box �z��3 and �x��12 in cases A and B, �x��20 in cases C and
D. The dotted lines represent the net energy flux �F into or out of the box.
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V. SUMMARY AND CONCLUSIONS

Using simple balance arguments akin to those described
by Priest and Forbes20 for symmetric reconnection and
Cassak and Shay,6 Swisdak and Drake21 for asymmetric
steady reconnection, we have derived scaling laws for the
reconnection rate, given by expression �25�, which general-
ize previous results by including compressibility in addition
to asymmetry between the plasmas and fields in the inflow
regions. The reconnection rate obtained by Ref. 6 for the
incompressible case is modified by a factor r=�o / �̄, which
represents the compression ratio between the outflow density
�o and a density �̄ corresponding to the simple mixing of the
inflowing plasmas without compression. The factor r de-
pends on the adiabatic index 	 as well as on the plasma �
and the magnetic field ratio between the two inflow regions
but not on the densities. For 	=5 /3, the compression factor
r varies between 1 �for large � or large magnetic field ratio�
and 2.5 �for small ��. For symmetric reconnection the factor

r becomes identical to the compression ratio derived by
Soward and Priest.22

The main simplifying assumptions are as follows. �1�
Neglect of gradients of external parameters along the recon-
necting current sheet; this also implies that the effect of pres-
sure gradients in the acceleration or deceleration along the
sheet is neglected, such that the acceleration is assumed to
result entirely from Lorentz forces; �2� neglect of the veloc-
ity components vx in the inflow regions; �3� assuming that
the magnetic field strength in the outflow region is small
compared to the inflow fields; and �4� representation of the
outflow plasma by single values of density, speed, pressure,
and magnetic field perpendicular to the outflow direction.
However, this latter assumption is generalized in the
Appendix.

We also found that, under these assumptions, one half of
the incoming total magnetic energy flux �Poynting flux� is
converted to bulk kinetic energy while the other half is added
to enthalpy flux, i.e., thermal energy. This result generalizes
earlier findings �e.g., Ref. 20� to asymmetric and compress-
ible scenarios.

Using resistive MHD simulations we then evaluated the
scaling laws and the energy conversion for different symmet-
ric and asymmetric scenarios. We found some improvement
of the scaling of the reconnection rate over earlier scaling
results based on the incompressible approximation. How-
ever, inclusion of the compressibility could not account for
differences in cases that differed only by the density ratio but
not in the magnetic fields and the plasma beta. Overall we
also found that the conversion of incoming Poynting flux
was split between bulk kinetic energy and enthalpy flux, al-
though the 1/1 split predicted by the simplified model was

p

p

z

z

z

z

x

(A)

(C)

vx/vo

vx/vo

FIG. 7. �Color online� Snapshots of the velocity components vx, normalized
by the predicted outflow speed �15�, and the pressure p for cases A and C
�Table I� at t=200 and t=100, respectively. Black contours are magnetic
field lines. The white rectangles indicate the box used for integration of the
fluxes shown in Fig. 6. The heavy lines represent paths of fluid elements that
end at x=20 in the region of fast outflow. White dots indicate the starting
points of two orbits chosen for Fig. 8.

Fx

Fx

x

A: B /B = 1/91 2

C: B /B = 2/31 2

FIG. 8. �Color online� Forces in the x direction as function of x for two
paths of cases A and C �Table I� indicated by white dots in Fig. 7, respec-
tively. Solid lines show the Lorentz force and dashed lines the pressure
gradient force.
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found primarily for weak asymmetry and low plasma beta. In
most cases the conversion to enthalpy flux dominated. This is
largely due to pressure gradient forces along the outflow di-
rection, which in part balance the Lorentz force and thereby
slow down the flow and convert bulk kinetic energy to ther-
mal energy by compressional heating.

Cases with strong magnetic field asymmetry further
showed a significant temporal variation with increasing con-
version to kinetic and decreasing conversion to enthalpy flux.
To identify the reason for this different behavior, we inves-
tigated the acceleration of fluid elements that contribute to
the fast outflow. We found that in these cases pressure gra-
dients along the magnetic field in the outflow region, al-
though weak, may nevertheless contribute significantly to the
acceleration. In these strongly asymmetric cases the incom-
ing plasma stems almost entirely from the low field, high
pressure, region and is ejected into the higher field, lower
pressure, side, with the velocity strongly aligned with the
magnetic field. Accordingly, pressure gradients are needed to
accelerate the plasma along the magnetic field.
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APPENDIX: NONUNIFORM OUTFLOW

In Sec. II, we have assumed that the outflow parameters
�o, vo. po, and Bo are uniform over the width of the outflow
region. Figure 9 demonstrates, for case C with modest asym-
metries, that this assumption is reasonably well satisfied for

the outflow speed vo�vox. The steady state condition �6� and
pressure balance �9� then imply that the magnetic field com-
ponent perpendicular to the outflow direction, Bo=Boz, and
the outflow pressure po are uniform as well. In contrast, the
outflow density in Fig. 9 shows a clear demarcation between
the plasmas originating from the two different sides. In prin-
ciple, thermal conduction, which is not included in our simu-
lations, could mix the two populations and reduce the density
and temperature difference.25,26 However, the net effect
should involve a competition between outflow �at or near the
hybrid Alfvén speed �2�� and the thermal conduction, which
is expected to propagate at the thermal speed. A proper treat-
ment would require PIC or hybrid simulations. Here we con-
sider the modifications of the scaling derivations associated
with a splitting of the outflow into two segments. The con-
figuration demonstrated by Fig. 9 is schematically shown in
Fig. 10. For simplicity, we also disregard the displacement
between x-point and flow stagnation point, which is of the
order of the size of the diffusion region, although this might
be included as well �e.g., Refs. 6 and 26�. That means we
consider primarily Petschek type configurations, where most
of the energy conversion takes place outside the diffusion
region.

We now apply the conservation laws discussed in Sec. II
to the modified scenario illustrated in Fig. 10. Solid lines
represent magnetic field lines and dashed lines are stream-
lines. The dash-dotted lines separate inflow and outflow re-
gions. �The balance arguments below do not necessarily re-
quire that these are sharp discontinuities, as indicated in Figs.
9 and 10.� Mass conservation �5� becomes modified to

L��1v1 + �2v2� = ��a�a + �b�b�vo. �A1�

For the derivation of the outflow speed �15�, we now use the
force balance in a conservative form that is more in line with
our use of the other conservation laws

� · 
�vv + ptotI� −
1

�0
BB� = 0 . �A2�

Here ptot is the sum of magnetic and plasma pressure as
defined by Eq. �7�. Integrating the x component of Eq. �A2�
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FIG. 9. �Color online� Velocity vx �top� and density � �bottom� for case C in
the x ,z plane at t=120, using �1=0.1, dx=1, and dz=0.5. Solid heavy lines
in the right half of the figure indicate streamlines. The dashed rectangle
indicates the width of the outflow region for a chosen half-length L=20.
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FIG. 10. �Color online� Schematic of the reconnection site including two
outflow regions with the widths �a and �b, respectively. Solid lines represent
magnetic field lines and dashed lines are streamlines. The dash-dotted lines
separate inflow and outflow regions. The displacement between x-point and
flow stagnation point, which is of the order of the size of the diffusion
region is disregarded.
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over a finite box and conversion into a surface integral then
leads to

� �vxvnds =
1

�0
� BxBnds , �A3�

where we have used that the total pressure is approximately
constant over the box length L so that the surface integral
vanishes. If the integrals in Eq. �A3� were taken over the
entire box of Fig. 1 they would vanish for symmetry reasons.
Hence we take the integrals only over half a box, x�0, as
shown in Fig. 10. At the left boundary vx vanishes for sym-
metry reasons, and at the upper and lower boundaries vx is
small by assumption. Therefore there is only a contribution
to the integral of vxvn from the right boundary, where
vx=vn=vo. At the top and bottom boundaries we find
Bx=B2 and Bn=Bz2 and Bx=−B1 and Bn=−Bz1, respectively.
At the right boundary, Bx=Bn=Box and at the left boundary,
Bx=Bn�B1 for the lower portion and Bx=−Bn�B2 for the
upper portion. This leads to the balance

��a�a + �b�b�vo
2 �

1

�0
�B1B1zL + B2B2zL − B1

2�a − B2
2�b

+ Box
2 ��a + �b�� . �A4�

Here B1z and B2z are suitable average values along the bot-
tom and top boundaries in Fig. 10. These values can be es-
timated from � ·B=0, which yields

� Bnds = 0. �A5�

We take the integral in Eq. �A5� separately over the upper
and lower portions of the box in Fig. 10 and obtain

− B1zL + Box�a + BoL + B1�a = 0, �A6�

B2zL − Box�b − BoL + B2�b = 0. �A7�

The terms with Box in Eqs. �A6� and �A7� are smaller than
the other terms by a factor � and are therefore neglected. If
B1z and B2z are then inserted into Eq. �A4�, we obtain

��a�a + �b�b�vo
2 =

1

�0
Bo�B1 + B2�L . �A8�

We can now use Eqs. �A1� and �6� to obtain the outflow
speed identical to Eq. �15�

vo
2 =

B1B2

�0�̄
. �A9�

This result was already noted, without proof, by Ref. 26.

The evaluation of the energy balance becomes identical
to that in Sec. II if we introduce an average outflow density
defined by

�o =
�a�a + �b�b

�a + �b
. �A10�

This derivation is therefore not repeated here. The conse-
quence is that the scaling of the reconnection rate and the
compression factor r=�o / �̄ remain unchanged if �o is de-
fined by Eq. �A10�.
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